

L.P. Kok

Dept. of Biomedical Engineering University of Groningen Antonius Deusinglaan 2 | 9713 AW Groningen The Netherlands

tel. +31503634955, fax +31503638875

E-mail: L.P.Kok@phys.rug.nl http://www.phys.rug.nl/lpkok TENTAMEN KWANTUMFYSICA 1

8 april 2004 9:00 – 12:00 uur

Hoor- en werkcollegedocenten:

prof.dr. L.P. Kok Drs. M. Eenink Drs. D. Westra.

(10 ptn.) Opgave 0

Elke opgave (1, 2, 3, 4) op een apart vel a.u.b. Zet je naam op elk vel met je oplossingen. Zet op vel 1 bovendien duidelijk je studentnummer, adres, geboortedatum, studierichting, en jaar van aankomst. N.B.: Let op de puntenwaardering: die kan verschillen per vraagstuk!

(15 ptn.) Opgave 1

(a) The Hermitian operator \hat{A} has an eigenstate $|a\rangle$ with eigenvalue a. If \hat{B} is the inverse operator of \hat{A} , prove that $|a\rangle$ is an eigenstate of \hat{B} with eigenvalue a^{-1} .

(b) Compute

$$\int_{-\infty}^{\infty} (x^2 + 5x - 3)\delta(3x - 6)dx. \tag{1.1}$$

(c) Evaluate the commutator $[\hat{H}, \hat{x}]$, where $\hat{H} = \hat{p}^2/2m + \frac{1}{2}m\omega^2\hat{x}^2$.

(25 ptn.) Opgave 2

A particle of mass m is subject to the harmonic-oscillator potential. At time t=0 it is described by the following coherent superposition the the corresponding stationary states,

$$\Psi(x,0) = \frac{1}{4}\varphi_0(x) + \frac{i}{2}\varphi_1(x) + \frac{\sqrt{11}}{4}\varphi_2(x). \tag{2.1}$$

where $\varphi_n(x)$ are the real solutions of the time-independent Schrödinger equation

$$\left[-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2} m\omega^2 x^2 \right] \varphi_n(x) = \hbar \omega (n + \frac{1}{2}) \varphi_n(x), n = 0, 1, 2, \dots$$
 (2.2)

(a) Show that the wave function (2.1) is normalized properly.

(b) Determine the wave function at time t > 0.

(c) Compute the probability to measure the energy $\frac{3}{2}\hbar\omega$.

(d) Argue (but be brief!) why the functions $\varphi_n(x)$ are orthonormal.

(e) What is the expectation value of the energy?

(f) Prove that the expectation value of x in the state (2.1) equals 0.

[Hint 1: which of the real functions $\varphi_n(x)$ are even, and which of the $\varphi_n(x)$ are odd?]

[Hint 2: Remember that $|\Psi(x,0)|^2 = \text{Re}\Psi(x,0)^2 + \text{Im}\Psi(x,0)^2$.]

(25 ptn.)

Opgave 3

A particle of mass m moves in the potential

$$V(x) = \begin{cases} \infty & x > b. \\ \frac{\hbar^2 \alpha}{2m} \delta(x) & x < b. \end{cases}$$
 (3.1)

where $b > 0, \alpha > 0$. Consider the situation where the particle approaches the potential from $x = -\infty$ with energy E > 0, encounters the potential, and is scattered.

- (a) Write down the time-independent Schrödinger equation for the wave function $\upsilon(x)$ in the region x < b.
- (b) Verify that the solution to this equation can be written as

$$\psi(x) = \begin{cases} A \exp(ikx) + B \exp(-ikx) & x < 0. \\ C \sin[k(x-b)] + D \cos[k(x-b)] & 0 < x < b. \end{cases}$$
(3.2)

and derive an expression for k in terms of E.

- (c) Formulate the boundary condition(s) on $\psi(x)$ at x = b. What is the consequence of this for the constants C and/or D?
- (d) Formulate the boundary condition(s) on $\psi(x)$ and its derivative (!!) at x = 0. With the help of this, express B in terms of A.
- (e) Compute the reflection coefficient $R \equiv |B|^2/|A|^2$.

(25 ptn.)

Opgave 4

A two-state quantum system has two states: $|1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. These two states are not eigenstates of the Hamiltonian, as we can see from the Hamiltonian matrix:

$$\hat{H} = \begin{pmatrix} \varepsilon & v \\ v & \varepsilon \end{pmatrix}. \tag{4.1}$$

where ε and v are real, and in fact $v \neq 0$.

(a) The most general state is a normalized linear combination:

$$|\langle\Psi
angle=a|1
angle+b|2
angle=\left(egin{array}{c} a\ b \end{array}
ight).$$

Write down the normalization condition on a and b.

- (b) Determine the eigenvalues and (normalized) eigenvectors of this Hamiltonian.
- (c) The system is initially (t=0) in state $|1\rangle$. What is the state at time t? From this, determine the probability to find the system in state $|2\rangle$ at a later time t.